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Abstract:
With the development of network services and location-based systems, many mobile applications begin to use users’ geographical
location to provide better services. In terms of social networks, geographical location is actively shared by users. In some
applications with recommendation services, before the geographical location recommendation is provided, we have to obtain
user’s permission. This kind of social network integrated with geographical location information is called location-based social
networks (abbreviate for LBSN). In the LBSN, each user has location information when he or she checked in hotels or feature
spots. Based on this information, we can identify user’s trajectory of movement behavior and activity patterns. In general, if there
is friendship between two users, their trajectories in reality are likely to be similar. In this study, according to user’s geographical
location information over a period of time, we explore whether there exists friend relationship between two users based on trajectory
similarity and the structure theory of graphs. In particular, we propose a new factor function and a factor graph model based on
user’s geographical location to predict the friendship between two users in the real LBSN networks.

Keywords: friendship prediction, geographical location, trajectory similarity, factor graph, LBSN

1 Introduction

The rapid development of the Internet in recent years has promoted
the emergence of various location-based services, which provide
users with more personalized recommendation services based on
their geographical location information, such as food delivery, taxi
hailing, travel, etc. More location-based services begin to request
users’ location information directly or indirectly to improve their
experience. Private data protection [1] should not be neglected and
become an important problem of personal privacy security. There
are some research work [2, 3] relevant on private data protection
and some of these techniques have been applied to real-world
systems. The privacy security of mobile devices is related to the
interests or habits of each end user, and the approaches proposed
in [4, 5] on the security of private information have been paid more
attention in recent years. The information shared by these mobile
devices facilitates a plenty of social research. In social networks,
users often share logs or photos having location information in
their social communities, and the friends sharing their everyday
activities are more likely to be in the same position [6–8], that is to
say, everyday interactions between friends make their activity area
have intersection which will partially reflect the correlation of their
locations, i.e., trajectory similarity [9, 10]. If we can discover the
connections of friends from their location information, then we can
improve the accuracy of existing link prediction algorithms[11], in
order to enhance the performance of recommendation systems.

Currently, several studies based on LBSN are applied to
recommendation system, among which the research on friend
suggestion system [7, 12] often clusters users’ home, work,
restaurants and other central locations according to their location
information and check-in records, which aims to calculate the
similarity of check-in locations between two users. In addition, the
author described the types of locations via information entropy [13],

and then treated the intersection of locations w.r.t. two users as
the similarity between users. Li [14] employed the method of
multi-layer network combination to combine more information
into the network to build a friend model. Other state-of-the-art
recommendation [15–17] models do not explore the connection
between users’ location information. For example, the model
proposed by [15] combines users’ historical location and current
location for recommendation, which is helpful for improving user’s
experience. Most link prediction methods focus on the importance of
location to visitors, ignoring the strength [18, 19] of the relationships
between those visitors. The drawbacks of these approaches lie
in that: they are lack of extensibility, and each approach does
work in a specific area. In addition, relevant research generally
retrieve features [12, 20, 21] from geographical location information
without taking into consideration the correlation between location
information. Since different networks have different characteristics,
we need to find the connections of users’ geographical locations
in the LSBN networks, and this connection is also applicable to
most LBSN networks, that is to say, the model established based
on connections between users is scalable in the LBSN network.

Factor graph model is a probability graph model, which plays
a very important role in link prediction. Tang [22] and Cen [23]
proposed a partiallylabeled pairwise factor graph model, where the
relation prediction method does not only obtain good performance,
but also has good scalability. But, for LBSN networks, the
geographical location information shows the similar behavior of
users. In this study, the relationship between users will be extracted
to build as a factor function, and we design a factor graph model to
predict whether there is friend relationship between two users.

Original contributions. The main contribution of this study is that,
we propose a friend relationship learning and prediction model based
on geographical location information and factor graph model in
LBSN networks. In the proposed model, the geographic location
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information contained in these social networks is retrieved from
user’s trajectory data in LBSN, and the factor function is established
based on the similarity of trajectories to learn these features. In
addition, we use two real data sets in experiments, i.e., Brightkite and
Gowalla, and the results show that our proposed model outperform
the state-of-the-art classification methods.

The rest of the paper is organised as follows. Section 2 introduces
the problem statement and the graph theory. Section 3 presents the
calculation method, the definition of trajectory similarity and the
analysis of trajectory similarity in the factor graph with multiple
correlation. Section 4 gives the theoretical fundamentals of factor
graph and the learning and prediction phases in the factor graph.
Section 5 shows the experimental results of the proposed model by
comparing it with other methods. Lastly, Section 6 concludes this
paper and discusses the relationship prediction approach in machine
learning.

2 Problem formulations

Generally speaking, we define a user in the social network as a node
v in the graph, and the relationship between users is defined as an
edge e in the graph, where e ∈ v × v. Therefore, a social network
is described by G = (V,E), where V and E represent the set of
nodes and edges in the network, respectively. In addition to these two
basic components, different heterogeneous networks include other
additional information. For example, there are many unlabeled nodes
EU in social networks, and each node v has a different parameter
x. Based on the aforementioned concepts, we give the definition of
social networks.

Definition 1. [Partially labeled attribute location based networks]
In this network, only partial nodes are labeled, and each node
contains five-tuple attribute information, the network is denoted by
G = (V,EU , EL, RL, C,X), where EL represent a tagged edge
set which is associated with RL, E = EL ∪ EU , C represents the
location information retrieved from users’ check-ins, and X is a
property matrix associated with the set of users V , in which each
row corresponds to a user, and each column is an attribute, one of
the elements xid in X denotes the dth attribute of user vi.

From the above definition of a graph, we can further formulate
the problem. For predicting the friendship of users in location-based
social networks, given a partially labeled attribute network, the
prediction of friendship in the network can be defined by the
following function:

f : G =
(
V,EL, EU , RL, C,X

)
→ Y (1)

where Y is the output set of friendship which is predicted by the
proposed model, and we can predict the tag type yi of all EU .

Presently, most of the researches on relationship mining in
location-based social networks aims to collect more features and
improve the classification accuracy by proving that these information
is more effective and valid. However, most of existing approaches do
not have good expansibility and cannot be applied to location-based
social networks.

The check-in information of users is uploaded over a period
of time and the users’ location information is very limited, for
example, 1,145 users uploaded less than five location information
in Brightkite, while the complete information is 221. Therefore,
in order to balance the number of trajectories between users,
all uploaded location information is grouped by day, and then
partitioned into time slices. The time of one day from 0:00 AM to
24:00 PM is divided into η time periods for location merging.

Definition 2. [Users daily activity trajectory] In order to distinguish
between weekdays and weekends, these two kinds of trajectories are
collceted respectively. The definition is given as follows:

Tritype = {L1, L2, ..., Lη}, i ∈ V, type ∈ {work,week} (2)

3 Trajectory similarity measurement and
multivariate correlation analysis

There are many geographical correlations between users, such
as the distance [24] between home, work, restaurant and so on.
However, trajectory similarity [25] can best reflect the relationship
between users, because the activity trajectories of users with a close
relationship will affect each other, and their activities have similarity,
including working, entertainment and eating. The similarity of
the trajectories of user’s social activities was high between two
users who are friends. Then, we show how trajectory similarity is
measured, and then explore the distribution of binary and ternary
similarity.

3.1 Trajectory similarity measurement

Each person has his or her own activity trajectory every day, and
there are certain similarities between people who are close to each
other [26]. Therefore, the measure of similarity is of great help in
determining the relationship between two persons. The trajectory
measurement approaches can be divided into several categories, such
as common point-based measurement methods EDR [27], LCSS,
DTW, etc. In the shape-based method, Frechet distance [28] is often
applied. In the point-based measurement method, EDR does not only
consider the influence of noise, but also the common substring. For
the activity trajectories of two users, when the distance of users w.r.t.
a point is less than a threshold, we can regard this point as a point in
a mutual sub-trajectory, which is a similar trajectory point.

In regard of the LSBN data, Gowalla and Brightkite have
thousands of check-in records of users and it is time consuming
to calculate the similarity of trajectories. In terms of trajectory
modeling, Mazumdar [29] proposed a method to use entropy matrix
to model the user’s historical data. Generally speaking, the activity
trajectory of weekday users is mostly the same, while the trajectory
of weekend users are often different. Therefore, before measuring
similarity, we need to retrieve user’s trajectories. The weekday
trajectory is the general activity track, denoted by Trwork, and the
weekend track is expressed by Trweek. In addition, noise [30] may
appear in user’s trajectory, which shows a big bias in latitude and
longitude. So, in this study, the data satisfying d(xi, xmean) > ω
are removed. In the phase of trajectory sampling, a position mean
value in a certain interval is viewed as the representative point during
this period. It is worthwhile to note that in a certain period of time,
the user’s behavior is mostly the same. For example, before 8 AM,
the user is likely to be at home, from 8 AM to 12 PM and from 14
PM to 18 PM, the user is likely to be at work. From 12 PM to 14 PM
and from 19 PM to 24 PM, and the user is likely to be in a restaurant
or outdoors. Based on the above discussion, we should take into full
consideration these factors in the phase of trajectory sampling. After
both trajectories of two users are obtained, the similarity of their
trajectories can be calculated based on the EDR (Edit Distance on
Real sequence) similarity algorithm given below.

Definition 3. [Edit Distance on Real sequence(EDR)] Given two
trajectory sequence of moving objects Q = {q1, q2, ..., qm} and
R = {r1, r2, ..., rn}, Sim(Q,R) is used to recursively calculate
whether each point in the sequence is similar to the others, it is
defined as follows:

Sim(Q,R) = min





Sim(Rest(Q), Rest(R)) + subcost,

Sim(Rest(Q), R) + 1,

Sim(Q,Rest(R)) + 1
(3)

where m = 0 or n = 0, Sim(Q,R) = n or m, m and n represent
the lengths of the sequences Q and R, respectively, Rest(Q) and
Rest(Q) indicate that pointers in the sequence Q and R move back
one bit, i.e.,Rest(Q) = {q2, q3, ..., qm}, and subcost is formalized
as follows:
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subcost =

{
0 if Dist(Head(Q), Head(R)) < ε

1 otherwise
(4)

where Dist(Head(Q), Head(R)) is the actual distance between
the first point of Q and R. If Dist(·) is less than ε, we view
it as 0. When we calculate the trajectory similarity of users, we
will calculate the similarity of the two trajectories by the following
equation:

Sim(Tri, T rj) = min(Sim(Triwork, T r
j
work),

Sim(Triweek, T r
j
week)),

(5)

EDR can reduce noise points by quantifying distances to 0 and
1, and edit distance can improve the local time behavior, especially
if local time-shifting is not a big deal. The EDR results may be
biased when local time trends are large. In order to make the result
more accurate, we can calculate the similarity after normalizing the
trajectory.
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Fig. 1: Trajectory similarity of Brightkite and Gowalla, where the
x-axis represents similarity calculated by Equation 5.

As shown in Fig. 1, in terms of two LBSN networks, with the
improvement of trajectory similarity, the probability of friendship
between these two users will also increase. However, in the actual
case, the proportion after estimating the similarity of trajectories is
greater than 4 is very small.

3.2 Multivariate correlation analysis

Here, we will introduce the binary and ternary associations [31]
based on the trajectory similarity algorithm in Section 3.1, and
analyze the similarity distribution under different relationship
combinations.

In the network, we call the common connection of two edges of
the same user as a binary relationship [31]. Another special structure
is that three users form a triangle relationship, which is regarded
to a basic ring. Because there are three relationships, a factor is
often used to represent them in a factor graph, which is viewed
as a ternary relationship. Different edges in these combinations
may have different similarity, so we can statistically analyze the
distribution under different relationships and different combinations
of similarities. From the distribution of similarity and friendship
probability shows in Fig. 1, with the increase of similarity, the
probability of friendship also increases significantly. Binary and
Ternary relationship in a factor graph is given in Fig. 2. We use the
functions h(·) and g(·) to represent the factor functions of binary
and ternary correlations, and we treat the trajectory similarity as the
measurement to establish the features under different relationship
combinations.

As shown in the Fig. 3, the similarity distribution of the two
edges w.r.t a random node is different from the distribution of friend
nodes. In regard to the Brightkite data, the similarity distribution
of the edges with a friend relationship aggregates mostly around 3,
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Fig. 2: Binary and Ternary relationship in a factor graph

while the similarity distribution of the randomly combined edges is
mostly around 1, having a difference of 2. For the Gowalla data,
the similarity of friends is obviously higher, and the random edges
also concentrates, with a gap of 3. In terms of binary relation, the
similarity of two edges is used to calculate the difference, which
can show the difference in similarity of two edges. In terms of
ternary relation, the difference of three similarity combinations are
calculated respectively, and their mean values are used to represent
the feature.
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Fig. 3: Similarity of trajectory correlation. The x-axis represent
different EDR. We randomly select nodes to calculate similarity of
users’ trajectories.

4 A new trajectory similarity factor graph model

The proposed model is based on the track similarity relationship
of users in the network mined on LBSN, and the factor function
is established and added into the factor graph model based on
the geographical location characteristics. Before we input the
original network into the model, we need to transform the original
node-oriented network into an edge-oriented network. The nodes of
the binary relationship in the original network are represented by
a binary factor node. In addition, we need to add a triple factor
function to the ternary relationship. In the proposed model, the factor
functions used by binary and triadic factor nodes use the trajectory
information of the adjacent nodes, while node vi contains the tag
information and attribute feature vectors. Then, we propose the
global probability distribution of the factor graph model as follows:

p(Y |G) =
1

Z

∏

ei

f(yi, xi)
∏

∧ij
h
(
yi|Si, yj |Sj

)

∏

Mijk
g
(
yi|Si, yj |Sj , yk|Sk

)
,

(6)

where f(yi, xi) is the factor function associated with edges in
the network. In a factor graph, each node is connected with an
independent factor node. yi in the function represents the type of
a tag, and xi is the attribute corresponding to the node, so the factor
function represents the functional relation between the node feature
and the tag. The function h

(
yi|Si, yj |Sj

)
represents the functional
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relation between trajectories of three users in a binary relationship,
and only the similarity of two pairs of users is compared. The
trajectories of users can be partitioned into weekdays and weekends.
Additionally, the function g

(
yi|Si, yj |Sj , yk|Sk

)
represents the

relation between the trajectories of three users in a ternary relation,
but we need to compare the trajectories of three pairs of users. In the
factor graph, the total probability distribution can be figured out by
the product of each factor function. In Equation 7, Z represents the
normalized constant which is defined as follows:

Z =
∑

Y

∏

ei

f(yi, xi)
∏

∧ij
h(yi|Si, yj |Sj)

∏

Mijk
g(yi|Si, yj |Sj , yk|Sk)

(7)

Equation 7 is used to calculate the normalized factor of the
global distribution in a factor graph, which can be derived from the
normalized factor of each function in the global distribution. These
normalized factors are used to express the calculation results as a
probability in the phase of probability calculation.

The definition of the factor function in the factor graph is very
important. We define two different factor functions based on the
similarity of trajectories. Here, we will give the definition of the
factor function in detail.

The factor function is defined as follows. First, it is the factor
function f(·) which is independent of node and represents the
relation between the node attribute and the relation tag:

f(yi, xi) =
1

Zλ
exp

{
λTφ(yi, xi)

}
, (8)

where, Z is also a normalized constant, λT represents the parameter
vector with the same dimension as xi. The function φ(yi, xi) is an
attribute vector function associated with the label yi. In Equation 9,
F represents the friendship label and S represents the stranger label
(not friends). Equation 9 implies that the basic feature of a node
is represented by a vector, which is used for the point product
calculation with the parameter vector.

φ(yi, xi) = (1yi=F xi,1yi=Sxi)
T , (9)

The factor function h(·) in the binary relation represents the
relation between two adjacent nodes with real values having the
trajectory similarity. There are three users in the binary relation, so
there are three trajectories. Here, only the relation between these two
similarity conditions and the label y of the node is considered, which
are yi|Si and yj |Sj , respectively. According to the aforementioned
trajectory similarity measurement function, the factor function can
be formulated as follows:

h(yi|S(i), yj |S(j)) =
1

Zα
exp

{
αTh(yi|S(i), yj |S(j))

}
(10)

where αT is used to represent a parameter vector, and a new function
h(·) is used to obtain the new vector associated with the node
label and trajectory similarity. After multiplying these two equal
dimensions, a new function distribution is formed by using the power
function e. As for the function h(·), the detail is given as follows:

h(yi|S(i), yj |S(j)) = ϕ(yi, yj)·H(S(i), S(j))T (11)

where function ϕ(·) generate a vector for the combination of labels,
so dimϕ(·) = dimY 2. Notation abs(S(i)− S(j)) is taking the
absolute value. ϕ(·) can defined as follows:

ϕa,b(yi, yj) =

{
1 yi = Y a, yj = Y b;

0 otherwise,
(12)

where a and b represent the labels of two nodes, which means
that when nodes are labeled Y a and Y b with a valid value at the

corresponding position of the vector. Equation 12 represents the
characteristics of the node label combination.
S(·) in Equation 11 and the previous equation represents the

trajectory similarity of the users on both sides, and S(·) is defined as
follows:

Sa,b(i) = Sim
(
Tra, T rb

)
(13)

where Sim
(
Tra, T rb

)
is used to calculate the similarity of

trajectories Tra and Trb. We define a threshold value ε, when the
similarity is greater than ε, we consider them to be similar, and then
we assign a valid value. Actually, the setting of this threshold will
affect the experimental results. An appropriate value can be found
by analyzing different algorithms through experiments.

Similar to the definition of the factor function of the binary
relation, the definition of the ternary relation takes into account the
third user’s trajectory and the label of an newly added edge, so the
dimension of the parameter vector is not the same as that of the
binary relation. The detailed definition is given as follows:

g({yv|S(v)}) =
1

Zα
exp{βTg({yv|S(v)})}

=
1

Zα
exp

{
βT
(
ς({yv})T ·G({S(a)})

)} (14)

where v ∈ {i, j, k} and the function G(·) in the above equations are
defined as follows:

Hs({S(v)}) =

{
1 abs(S(i)− S(j)) = s;

0 otherwise,
(15)

Gs({S(v)}) =

{
1 min(S(i), S(j), S(k)) = s;

0 otherwise,
(16)

Equation 15 and Equation 16 indicate the generation of features
based on trajectories’ similarity, which means that we set the
constant value 1 at the corresponding position in the vector. These
two factor functions represent the nonlinear feature representation
of the similarity of the input. In reality, the number of parameters
defined in a factor graph is directly related to the number of labels
and the range of similarity.

Model learning. In the factor function, we define a parameter
vector for each factor function, that is, (λ, α, β). In the phase of
model learning, we need to learn these parameters, so here we use the
maximized logarithmic similarity function to calculate the gradient
of the parameters. For relationship nodes with labels,

O(λ, α, β) = log p
(
Y L|G

)
= log

∑

Y |Y L
p(Y |G) (17)

To facilitate understanding, we define the parameter as follows:
θ = {λ, α, β},

s(yi) = (φ(yi, xi),h(yi|S(i), yj |S(j)),

g(yi|S(i), yj |S(j), yk|S(k)))T
(18)

So we can redefine joint probability of Equation 6 as follows:

p(Y |G) =
1

Z

∏

i

exp
{
θT s(yi)

}
=

1

Z
exp

{
θT
∑

i

s(yi)

}

=
1

Z
exp

{
θTS

}

(19)
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Put Equation 19 into Equation 17 to obtain that:

O(θ) = log p
(
Y L|G

)
= log

∑

Y |Y L

1

Z
exp

{
θTS

}

= log
∑

Y |Y L
exp

{
θTS

}
− logZ

= log
∑

Y |Y L
exp

{
θTS

}
− log

∑

Y

exp
{
θTS

}
(20)

So here we can use the gradient descent method to solve this
function. Firstly, we need to take the partial derivative of this
log-likelihood objective function. Here, we solve the parameter θ
and the following equation can be obtained:

∂O(θ)

∂θ
=
∂
(

log
∑
Y |Y L exp

{
θTS

}
− log

∑
Y exp

{
θTS

})

∂θ

=

∑
Y |Y L exp θTS · S
∑
Y |Y L exp θTS

−
∑
Y exp θTS · S∑
Y exp θTS

= Ep
θ

(Y |Y L,G)S − Ep
θ

(Y,G)S
(21)

where Ep
θ

(Y |Y L,G)S is the expectation if the graph is labeled,
and Ep

θ
(Y,G)S is the expectation if the label is unknown. So, we

need to calculate the global distribution of the factor graph with and
without labels. The expectation given in Equation 21 is the key step
to calculate each parameter’s gradient in the learning process, so we
need to calculate the probability distribution of each node with and
without labels in order to figure out the expectation.

An efficient method for calculating the probability distributions in
factor graphs is loopy belief propagation (LBP) [31]. In the phase of
learning, LBP is used to calculate the probability distribution and
marginal probability of (Y |Y L, G) with labels, and then (Y,G)
without labels. The first propagation of the message is different in
the above two cases. In the first round of calculation, the gradient can
be fuzzy and the parameters can be uniformly initialized. When the
message propagation in LBP runs after a finite number of iterations,
the probability distribution tends to be stable. When the change of
gradient becomes smaller and less than a threshold, the algorithm
converge, then we can calculate the marginal distribution of each
node.

Inferring Unlabeled Friend Relationships. In the learning
process, after a certain number of iterations, the algorithm converges,
the unlabeled node V can be predicted based on the parameters
θ obtained in the phase of training according to the maximum
and propagation algorithm by the following equation: Y ∗ =
arg maxY |Y L p(Y |G, θ).

5 Experiment

5.1 Datasets

In this study, we use two real location-based services network data,
i.e., Brightkite and Gowalla. These two data sets also include a
large amount of check-in data besides the basic edge and node
information. The description of these two data sets are given as
follows:

Gowalla–the data set contains 196,591 nodes, 950,327 edges, and
6442,890 check-in data corresponding to each user.

Brightkite–the data set contains 58,228 nodes, 214,078 edges, and
449,1143 check-in data for each user.

We compared the predicted results with the edge provided in
the data where two users are ground-truth friends. The negative
samples in the data set are generated by using the random sampling
method, and the actual connections are established in the network
and labeled. In the phase of sampling, we try to balance the number
of positive and negative samples, but in the real network, negative
samples will not be labelled.

5.2 Comparison methods

Inferring the friendship relation can be regarded as a classification
problem, so we use the commonly-used classification methods, such
as SVM and LP [32]. In experiments, we extracted many topological
features and geographical location features for classification.
Topological features include common neighbors(CN), Degree, JC,
PA, etc. Geographical location features mainly include distance and
trajectory similarity of three representative locations (home, work
and restaurant). As for the effectiveness of these special detection,
the research [33] gives a detailed description of the link prediction
on the LBSN network. Some of the attributes are given as follows:

Table 1 Summarization of the attributes used in the basic classification method
and our model. where u and v represent nodes, and the neighbors of node u
are represented by Γ(u).

Attribute Equation Example

CN Fu,v = Γ(u) ∪ Γ(v) CommonFriend_[Fu,v]

Degree Du = count(Γ(u))
Dv = count(Γ(v))

Degree_U_[Du]
Degree_U_[Dv]

JC Ju,v =
|Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)| JaccardsCoefficient_[Ju,v]

PA pu,v = |Γ(u)| · |Γ(v)| PreferenceAttachment_[Pu,v]

TS Su,v = Sim(Tru, T rv) TrajectorySimilarity_[Su,v]

Dist(home) Dhu,v = Dist(Lhu, L
h
v ) DistenceHome_[Dhu,v]

Dist(work) Dwu,v = Dist(Lwu , L
w
v ) DistenceHome_[Dwu,v]

SVM, this is a supervised learning method. The data set is
partitioned into the training set and testing set. SVM uses the
attribute vector xi of each relational label to train the model,
and its decision boundary is the maximum-margin hyperplane to
classify the learning samples. The learned parameters are used for
quantitative classification. We implemented this algorithm by using
the svm-light package. We mainly focused on the penalty factor C
and γ in SVM. In the phase of training, we tested each parameter
with the grid search method to determine the optimal parameter
values. In addition, we used ten-fold cross validation to group the
data sets for training to avoid overfitting.

LP, is a Semi-supervised learning. Label propagation (LP) [32]
spreads labels based on proximity to the relation. Using the relation
between samples, a complete graph model is established, which
is suitable for undirected graph. Each node label is propagated to
the adjacent node according to trajectory similarity. At each step
of node propagation, each node updates its label according to the
label of its adjacent node. In the phase of label propagation, keep the
label of labeled data unchanged so that it can transmit the label to
unlabeled data. Lastly, when the iteration terminates, the probability
distribution of similar nodes tends to be similar and can be grouped
into a class. LP does not require tuning parameters because the phase
of label propagation is based on the network structure. In order to
obtain the best classification results, the edge weight is specified
according to the topological similarity and is used to distinguish the
propagation priority.

The proposed method (TS-FGM), our proposed model on
factor graphs includes binary and ternary factors. In addition, we
combine the factor graph model with the common binary and
ternary factors, which is called the multivariate correlation factor
graph model (MC-FGM). By comparing the effectiveness of the two
methods as factor functions, it is proved that the proposed similarity
multivariate correlation can achieve better results in LBSN networks.
In experiments, we only divided the data set into training set and
testing set. We do not use the cross-validation method, because the
data used in a factor graph is a complete network and the phase of
calculating the probability distribution is based on the information
transferred between nodes. The learning and prediction processes of

IET Research Journals, pp. 1–7
c© The Institution of Engineering and Technology 2015 5

Auto-generated PDF by ReView CAAI Transactions on Intelligence Technology

lfgmctex − 20200504.pdfMainDocument IET Review Copy Only 6

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



these two methods are similar. In the phase of gradient descent, the
proposed methods will predict the unknown labels in each iteration
of calculation. The parameter gradient can be as small as possible
after convergence. We use the method of dynamically changing the
step size to make the models converge fast. The definition of the
factor function of MC-FGM is similar to Equation 10, which is given
below:

h(yi, yj) =
1

Zα
exp

{
αTϕ(yi, yj)

}
(22)

g({yv}) =
1

Zα
exp

{
βT (ς({yv}))

}
(23)

5.3 Performance analysis

5.3.1 Accuracy performance analysis: According to Table 2,
the proposed TS-FGM method has a great improvement in the
prediction accuracy by comparing with SVM, achieving around
24% improvement in Brightkite data set and 15% improvement
in Gowalla data set, respectively. When compared with the LP
method, the precision is improved by about 7%, and the prediction
accuracy of positive and negative samples is also higher than that
of LP. The method MC-FGM is a simplified version of TS-FGM,
where the similarity of trajectories is not taken into account in
feature extraction. In general, no more features are generated for
multivariate correlation. In terms of the prediction performance,
the TS-FGM method still improves the accuracy by about 5%
compared with the MC-FGM method. In the Brightkite as well as
the Gowalla datasets, the predicted performance of the Brightkite
data was generally superior to that of Gowalla. According to the
topological analysis of these two networks, the topology structure
of Brightkite is more complex than that of Gowalla, so there are
more multivariate correlations, e.g., ternary correlations. The best
prediction accuracy value of our method in Gowalla reached to
88.75%. In contrast, the performance of SVM is the worst and LP
was stable.

Table 2 Performance of friend prediction with different approaches (%)

Data set Method Precision Recall F1 Acc.

Brightkite

SVM 70.43 54.98 61.76 66.54
LP 84.91 55.25 66.94 83.03

MC-FGM 85.84 56.01 67.79 85.12
TS-FGM 91.53 56.88 70.16 93.65

Gowalla

SVM 74.84 64.36 69.20 73.06
LP 82.93 59.57 69.33 79.41

MC-FGM 84.04 59.86 69.92 81.24
TS-FGM 87.35 62.08 72.57 88.78

5.3.2 Factor contribution analysis: In the section, we will
analyze the factor contribution and we analyze the predictive
performance of the model by removing certain factors and
combining some factor functions. As shown in table Table 3, we

Table 3 Contribution of different factor functions in prediction accuracy(%)

Data set Factors used Pre. Rec. F1 Acc.

Brightkite

Attributes 81.06 54.04 64.85 77.34
+ TS|Binary cor. 85.11 55.25 66.94 83.03(+6%)
+ TS|Ternary cor. 91.53 56.88 70.16 93.65(+10%)

Gowalla

Attributes 78.64 61.71 69.16 75.97
+ TS|Binary cor. 85.37 62.35 72.06 85.70(+10%)
+ TS|Ternary cor. 87.35 62.08 72.57 88.78(+3%)

added three factor functions one by one to compare the prediction

accuracy. We can see that the prediction accuracy is very low
with only attribute feature factor functions, and the prediction
performance is greatly improved by adding the binary correlation
factors in both data sets, i.e., Brightkite(+6%) and Gowalla(+10%).
According to the performance by adding ternary factors in these
two data sets, the ternary correlation in Brightkite data greatly
improved the prediction accuracy, making the prediction results
reach to 93.65%, but the improvement in Gowalla was less obvious
than that in binary correlation. In summary, the proposed similarity
factor does play an important role in prediction.

5.3.3 Analysis of feature function: In terms of our proposed
factor function, H(·) and G(·) are used to represent the similarity
feature functions under binary and ternary correlations, respectively.
Generally speaking, the feature function needs to express two input
variables as a valid feature value. In our model, we used the
definitions of these two feature functions that can achieve the best
prediction results.
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Fig. 4: Prediction performance of binary and ternary correlation
factor functions on different datasets.

According to Fig. 4, the feature functions of the binary
correlations performed the best for abs(absolute value of difference
in {Su, Sv}), where Si(i ∈ {u, v}) represents the trajectory
similarity between two users) in both Brightkite and Gowalla,
and better for min(minimum value in {Su, Sv}) than for
max(maximum value in {Su, Sv}) and abs in the ternary
association. It is worthwhile to note that we can also use the Sigmod
function to define the threshold to represent features if we do not
consider the time complexity.

6 Conclusion

In this paper, we mainly studied how to extract users’ geographical
location connections and build a model to predict the friend relations
in social networks based on the hidden information and factor
graphs, and we conduct experiments on two real LBSN networks i.e.,
Brightkite and Gowalla. The cardinality of Gowalla data is five times
that of Brightkite, so we used a sampling method for Gowalla to
remove most nodes with no check-in information and the ones with
very little information. Based on trajectory similarity, we studied
the representation of binary and ternary network associations.
Based on these preliminaries, we propose the TS-FGM model.
According to the experimental results, our method is better than
other classification algorithms in predicting accuracy. In terms of
efficiency, Gowalla has a larger number of data, which is time
consuming. In our future research, we will focus on reducing the
time complexity of the message propagation process in the factor
graph [23]. In addition, our experiment has also proved that the
location information is indeed effective in improving the accuracy.
So, if we can extract more effective location information, we can
further improve the performance of the proposed algorithm.
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